Partielle Integration 4.3.1 Für $f,g\in C^1([a,b])$ gilt
$$
\int\limits^b_a f (x)g'(x)\, dx=\left[f(x) g(x)\right]^{\,b}_{\,a}-\int\limits^b_a f'(x) g(x)\,dx,
$$ wobei man abkürzend schreibt $\left[h(x)\right]^{\,b}_{\,a}:=h(b)-h(a)$. In der Schreibweise mit unbestimmten Integralen kommt die Regel in der Form \[\int fg'\,dx=f g-\int f'g\,dx.\]
Beweis. Gemäß der Produktregel für das Differenzieren gilt
$$
f g'=(fg)'-f'g.
$$ Das bedeutet nach dem Hauptsatz \[
\left[f(x) g(x)\right]^{\,b}_{\,a} =\int_a^b \left(fg\right)'\,dx=\int_a^b f'g\,dx+\int_a^b fg'\,dx
\]qed
Beispiele 4.3.2
- Ein häufig brauchbarer Trick besteht darin, $f=X$ zu wählen. \[
\int g(x)\,dx =xg(x)-\int xg'(x)\,dx.\] Das funktioniert zum Beispiel sehr gut bei der Integration des Logarithmus. Es bezeichne $F_n$ die Stammfunktion für $\log^n$. Dann gilt \[
F_n=\int\log(x)^n\,dx=x\log(x)^n-\int xn\log(x)^{n-1}\frac1x\,dx=x\log(x)^n -nF_{n-1}.
\] Derart erhält man rekursiv zum Beispiel \begin{aligned}
\int\log(x)\,dx &= x\left(\log(x)-1\right)\\
\int\log(x)^2\,dx &= x\left(\log(x)^2-2\log(x)+2\right)\\
\int\log(x)^3\,dx &= x\left(\log(x)^3-3\log(x)^2+6\log(x)-6\right),\end{aligned} et cetera. Die geschlossene Formel lautet
$$\int\log^n(x)\,dx=
\sum\limits_{k=0}^n(-1)^{n-k}\frac{n!}{(n-k)!}x\log^{n-k}(x)$$ und lässt sich leicht durch Differenzieren der rechten Seite nachprüfen. - Zum Berechnen des Integrals $$\int x^n\log (x)\,dx$$ für $n\in\mathbb Z\setminus\{-1\}$ setzen wir $f(x)=\log(x)$ und $g(x)=\frac1{n+1}x^{n+1}$ und erhalten
$$
\int x^n\log (x)\,dx =
\frac{x^{n+1}}{n+1}\log(x)-\int\frac{x^{n+1}}{n+1}\cdot\frac{1}{x}\,dx
=\left(\frac{\log(x)}{n+1}-\frac{1}{(n+1)^2}\right)x^{n+1}.
$$ - Partielle Integration liefert
$$
\int \cos^2(x)\,dx= \sin (x) \cos (x)+\int \sin^2(x)\, dx
= \sin (x) \cos (x)+ \int(1-\cos^2 (x))\, dx,$$ also
$$2\int\cos^2 (x) dx=x+\sin(x)\cos(x).$$ - Zur Berechnung des Wachstums der mittleren Binomialkoeffizienten ${2n}\choose n$ betrachteten wir die Folge $(a_n)$ mit $$a_n:=\frac1{\sqrt{n}}\cdot\prod_{k=1}^n\frac{2k}{2k-1},$$ und zeigten, dass diese gegen einen Grenzwert $p$ konvergiert. Jetzt können wir $p$ identifizieren. Dazu betrachten wir für $n\ge 0$ die Integrale $$I_n:=\int_0^{\frac\pi2}\sin(x)^n\,dx.$$ Man verifiziert sofort $$I_0=\frac\pi2,\quad\text{ und }\quad I_1=1.$$ Aus dem verallgemeinerten Mittelwertsatz der Integralrechnung erhalten wir wegen $0\lt \sin(x) \lt 1$ für $x\in (0,\frac\pi2)$ die Abschätzung $$I_{n+1}\lt I_n \text{ für } n\ge 0.$$ Partielle Integration liefert für $n\ge 2$
\begin{aligned}
\int_0^{\frac\pi2}sin(x)^n\,dx&= \left[-\cos(x)\sin(x)^{n-1}\right]_0^{\frac\pi2}+(n-1)\int_0^{\frac\pi2}cos(x)^2\sin(x)^{n-2}\,dx\\
&=(n-1)\int_0^{\frac\pi2}\sin(x)^{n-2}\,dx-(n-1)\int_0^{\frac\pi2}\sin(x)^{n}\,dx.
\end{aligned} Das ergibt die Rekursionsgleichung $$I_n=\frac{n-1}n I_{n-2}.$$ Damit erhalten wir $$I_{2n}=\frac\pi2\cdot \prod_{k=1}^n\frac{2k-1}{2k}\quad\text{ sowie }\quad I_{2n+1}= \prod_{k=1}^n\frac{2k}{2k+1}.$$ Vergleich mit der Definition der Folgenglieder $a_n$ liefert \[
2I_{2n-1}=\frac{a_n}{\sqrt{n}}\quad\text{ und } \quad2I_{2n}=\frac{\pi}{a_n\sqrt{n}}.
\]Wegen $I_{n+1}\lt I_n$ erhalten wir $2I_{2n+1}\lt 2I_{2n}\lt 2I_{2n-1}$ und damit \[
\frac{a_{n+1}}{\sqrt{n+1}}\lt \frac{\pi}{a_n\sqrt{n}} \lt \frac{a_n}{\sqrt{n}}
\] und umgeformt \[
\sqrt{\frac{n}{n+1}}a_{n+1}a_n\lt \pi \lt a_n^2.
\]Wir haben gesehen, dass die Folge $a_n$ konvergiert. Es folgt $$\lim_{n\to\infty}a_n=\sqrt{\pi}.$$